
  

Hashing
Part Two



  

Outline for Today
● Recap from Last Time

● A quick refresher on hash functions.
● Hashing Variants

● We built a hash table last lecture. There are other 
strategies we could have used.

● Linear Probing
● A deceptively simple and fast hashing scheme.

● Robin Hood Hashing
● Moving items around in a hash table.



  

Recap from Last Time



  

Hash Functions
● A hash function is a function that takes an object as 

input and produces an integer called its hash code. 

 
 

 
● If you feed the same input to a hash function multiple 

times, it will always produce the same output.
● Aside from this, though, the outputs of hash functions 

should look more or less random.
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Hash Tables
● A hash table is a data structure where items 

are positioned in an array based on their hash 
code.

● Last time, we saw chained hashing, where all 
items with the same hash code are stored in 
the same slot.

[0] [1] [2] [3] [4] [5]
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Try It Yourself!
● Insert the following 

values into this hash 
table.
● A (hash code 0)
● B (hash code 1)
● C (hash code 2)
● D (hash code 0)
● E (hash code 0)
● F (hash code 1)

[0] [1] [2]



  

Try It Yourself!
● Insert the following 

values into this hash 
table.
● A (hash code 0)
● B (hash code 1)
● C (hash code 2)
● D (hash code 0)
● E (hash code 0)
● F (hash code 1)

[0] [1] [2]
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New Stuff!



  

Making Fast Hash Tables
● Hash tables, like the one we saw last time, are among 

the most-commonly-used data structures in practice.
● As a result, it’s important for them to work as quickly 

and efficiently as possible.
● Anecdote: Google recently invested years of effort 

building a faster hash table. Why?
(Better hash tables) × (Lots of computers)

 

=
 

(Huge equipment, power, and CO₂ savings)
● The faster table they developed is based on insights 

from a different approach to building Map and Set.



  

Open Addressing
● The style of hashing we saw last time is called 

chained hashing, since we “chain” together all 
the items that have the same hash code.

● There is a family of other hash tables that use an 
idea called open addressing.

● In open addressing,
 ☞ each table slot holds at most one element. ☜

● If multiple elements hash to the same slot, they 
“leak out” and spill over into other free slots.

● These strategies form the basis for some of the 
fastest hash tables.



  

Linear Probing
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● Linear probing is 
a simple open-
addressing 
hashing strategy.

● We maintain an 
array of slots, 
which we think of 
as forming a ring.



  

Linear Probing
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● To insert an element, 
compute its hash code 
and try to place it at 
the slot with that 
number.

● If that spot is occupied, 
keep moving through 
the array, wrapping 
around at the end, until 
a free spot is found. 



  

Linear Probing
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● To look up an element, 
compute its hash code 
and start looking there.

● Move around the ring 
until either the element 
is found or a blank spot 
is detected.

● (If every single slot is 
full, stop looking after 
you’ve tried them all.)

fj



  

Linear Probing
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● Deletions are a bit 
trickier than in 
chained hashing.

● We cannot just do a 
search and remove 
the element where we 
find it.

● Why?

fj



  

Linear Probing
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● Deletions are often 
implemented using 
tombstones.

● When removing an 
element, mark that the 
slot is empty and was 
previously occupied.

● When doing a lookup, 
don't stop at a 
tombstone. Instead, 
keep the search going.

fj



  

Linear Probing
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● Deletions are often 
implemented using 
tombstones.

● When removing an 
element, mark that the 
slot is empty and was 
previously occupied.

● When doing a lookup, 
don't stop at a 
tombstone. Instead, 
keep the search going.

fj



  

Linear Probing
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● Having too many 
tombstones in a 
table can slow 
down lookups, 
since we have to 
scan past them.

● Tombstones should 
be overwritten 
when new elements 
are inserted. q

fj



  

Linear Probing
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● Be careful, though, 
to make sure you 
don’t allow for 
duplicates in your 
table.

q

fj



  

 ★ Linear Probing at a Glance ★
● To check if an element exists in the table:

● Compute the hash code of the element.
● Jump to that location in the table.
● Scan forward – wrapping around if necessary – until the item or an 

empty slot is found.
● To insert an element into the table:

● If the item already exists, do nothing.
● Otherwise, jump to the slot given by the hash code of the element. 

Walk forward – wrapping around if necessary – until a blank spot or 
tombstone slot is found. Then, put the item there.

● To remove an element from the table:
● Jump to the slot given by the hash code of the element.
● Walk forward – wrapping around if necessary – until the item or an 

empty slot is found. If the item is found, replace it with a 
tombstone.



  

How Fast is Linear Probing?
● Recall: The load factor of a hash table, 

denoted α, is the ratio of the number of 
items in the table to the number of slots.

● Fact: For any fixed value α < 1, the 
expected cost of a lookup in a linear 
probing table is O(1), assuming you have a 
good hash function (and you rehash when 
the table gets too full).

● This is the same big-O cost as a chained 
hash table, though with a totally different 
strategy!
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Try It Yourself!
● Insert the following 

values into this table.
● A (hash code 5)
● B (hash code 5)
● C (hash code 5)
● D (hash code 8)
● E (hash code 7)
● F (hash code 6)
● G (hash code 5)
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Try It Yourself!
● Insert the following 

values into this table.
● A (hash code 5)
● B (hash code 5)
● C (hash code 5)
● D (hash code 8)
● E (hash code 7)
● F (hash code 6)
● G (hash code 5)



  

Time-Out for Announcements!



  

Assignment 6
● Assignment 5 was due today at 1:00PM.

● Want to use your late days? You can extend the deadline by 24 
or 48 hours.

● Assignment 6 (The Great Stanford Hash-Off) goes out 
today. It’s due next Friday.
● Implement the hashing strategies from today!
● See how fast these approaches are and how they compare 

against chained hashing!
● As always, come talk to us if you have any questions! 

That’s what we’re here for.
● YEAH Hours will be recorded and posted today. Due to 

low attendance we won’t be holding them in-person this 
time. If you’d like us to bring those back, let us know!



  

Back to CS106B…



  

A Question of Fairness
● Suppose we look up each of these 

elements. How many slots would we 
need to look at to find each of them?

● There’s a large variance in how long it’s 
going to take to find things.

● How can we fix this?

4 5 6 7 8 9 10 11 12 13

…… A (5)

1 2 3 1 3 5 7
D (8) E (7) F (6) G (5)C (5)B (5)



  

● Robin Hood hashing is a slight 
modification to linear probing.

● When we insert an element, if 
the element we’re inserting is 
further from home than the 
current element, we displace 
that element to make room for 
the new one.

4 5 6 7 8 9 10 11 12 13

…… A (5) B (5) C (5) F (6)G (5)

0 1 2 33
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3
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3
H (12)

0
I (13)

0



  

● Neat trick: We can make 
unsuccessful lookups in a 
Robin Hood hashing table 
faster than in a linear probing 
table.

● Idea: Compare the distances 
of the item to insert and the 
item being looked up.

4 5 6 7 8 9 10 11 12 13

…… A (5) B (5) C (5) F (6)G (5)

0 1 2 33
E (7)

3
D (8)

3
J (6)

H (12)

0
I (13)

0

4

If J were in this 
table, it would 
have displaced 
the E. So J can’t 
be in the table!



  

● Neat trick: Robin Hood 
hashing doesn’t need 
tombstones.

● We can use a technique 
called backward-shift 
deletion instead.

4 5 6 7 8 9 10 11 12 13

…… A (5) B (5) C (5)

0 1 2
E (7)

1
D (8)

1
I (13)

0



  

 ★ Robin Hood Hashing at a Glance ★
● To check if an element exists in the table:

● Jump to the spot in the table given by the element’s hash code.
● Scan forward – wrapping around if necessary – keeping track of how many steps 

you’ve taken. Stop when you find the item, you find a blank slot, or you find a 
filled slot closer to home than the number of steps you’ve taken.

● To insert an element into the table:
● If the element is already in the table, do nothing.
● Jump to the table slot given by the element’s hash code. Scan forward – wrapping 

around if necessary – keeping track of the number of steps taken. If you find an 
empty slot, place the element there. Otherwise, if the current slot is full and 
closer to home than the element you’re inserting, place the item to insert there, 
displacing the element that was at that spot, and continue the insertion as if you 
were inserting the displaced element.

● To remove an element from the table:
● Jump to the slot given by the hash code of the element.
● Walk forward – wrapping around if necessary – until the item or an empty slot is 

found. If the item is found, remove it. Then, keep moving forward – wrapping 
around as necessary – moving elements backward in the table one slot until an 
empty slot or an item in its home position is found.



  

Try It Yourself!
● Draw what happens if 

we insert the following 
values into this Robin 
Hood hash table.
● A (hash code 3)
● B (hash code 4)
● C (hash code 4)
● D (hash code 3)

1

0

23

4



  

Try It Yourself!
● Draw what happens if 

we insert the following 
values into this Robin 
Hood hash table.
● A (hash code 3)
● B (hash code 4)
● C (hash code 4)
● D (hash code 3)

C
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B
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● What happens if we 
delete A?



  

Try It Yourself!
● Draw what happens if 

we insert the following 
values into this Robin 
Hood hash table.
● A (hash code 3)
● B (hash code 4)
● C (hash code 4)
● D (hash code 3)

B
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D
0
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● What happens if we 
delete A?

● What happens if we 
now delete D?



  

Try It Yourself!
● Draw what happens if 

we insert the following 
values into this Robin 
Hood hash table.
● A (hash code 3)
● B (hash code 4)
● C (hash code 4)
● D (hash code 3)

B
1

C
0 1

0

23

4

● What happens if we 
delete A?

● What happens if we 
now delete D?



  

Robin Hood Hashing
● Like linear probing, with a good hash function, the 

expected cost of a lookup in a Robin Hood hash table is 
O(1).
● (Assuming you have a fixed load factor α and rehash the table 

when you get too full.)
● Robin Hood hashing requires a bit of extra work 

compared to linear probing for the distance 
bookkeeping.

● However, the speedups from cutting off searches early 
and for not having tombstones are significant at high 
load factors.

● Optional: Code up Robin Hood hashing and compare it 
against linear probing.



  

Your Action Items
● Start Assignment 6

● You know the drill! Slow and steady progress 
is the name of the game here.

● Aim to complete Enumerations Warmup and 
Linear Probing Warmup tonight, then start 
working on Implementing Linear Probing 
tomorrow.



  

Next Time
● Linked Lists

● A different way to store a sequence.
● Recursive Data Types

● Data types defined in terms of themselves.
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