

Hashing
Part Two

Outline for Today
● Recap from Last Time

● A quick refresher on hash functions.
● Hashing Variants

● We built a hash table last lecture. There are other
strategies we could have used.

● Linear Probing
● A deceptively simple and fast hashing scheme.

● Robin Hood Hashing
● Moving items around in a hash table.

Recap from Last Time

Hash Functions
● A hash function is a function that takes an object as

input and produces an integer called its hash code.

● If you feed the same input to a hash function multiple

times, it will always produce the same output.
● Aside from this, though, the outputs of hash functions

should look more or less random.

Hash Function
"dikdik"

"kudu"

"pudu"

"dikdik"

3327

13985

28156

Hash Tables
● A hash table is a data structure where items

are positioned in an array based on their hash
code.

● Last time, we saw chained hashing, where all
items with the same hash code are stored in
the same slot.

[0] [1] [2] [3] [4] [5]

송강호

최우식

이정은 봉준호

조여정

Try It Yourself!
● Insert the following

values into this hash
table.
● A (hash code 0)
● B (hash code 1)
● C (hash code 2)
● D (hash code 0)
● E (hash code 0)
● F (hash code 1)

[0] [1] [2]

Try It Yourself!
● Insert the following

values into this hash
table.
● A (hash code 0)
● B (hash code 1)
● C (hash code 2)
● D (hash code 0)
● E (hash code 0)
● F (hash code 1)

[0] [1] [2]

A B C

D

E

F

New Stuff!

Making Fast Hash Tables
● Hash tables, like the one we saw last time, are among

the most-commonly-used data structures in practice.
● As a result, it’s important for them to work as quickly

and efficiently as possible.
● Anecdote: Google recently invested years of effort

building a faster hash table. Why?
(Better hash tables) × (Lots of computers)

=

(Huge equipment, power, and CO₂ savings)
● The faster table they developed is based on insights

from a different approach to building Map and Set.

Open Addressing
● The style of hashing we saw last time is called

chained hashing, since we “chain” together all
the items that have the same hash code.

● There is a family of other hash tables that use an
idea called open addressing.

● In open addressing,
 ☞ each table slot holds at most one element. ☜

● If multiple elements hash to the same slot, they
“leak out” and spill over into other free slots.

● These strategies form the basis for some of the
fastest hash tables.

Linear Probing

0 1
2

3

4

5

6
789

10

11

12

13

14
15

● Linear probing is
a simple open-
addressing
hashing strategy.

● We maintain an
array of slots,
which we think of
as forming a ring.

Linear Probing

f

w

y
j

z

r x

0 1
2

3

4

5

6
789

10

11

12

13

14
15

● To insert an element,
compute its hash code
and try to place it at
the slot with that
number.

● If that spot is occupied,
keep moving through
the array, wrapping
around at the end, until
a free spot is found.

Linear Probing

w

y z

r x

0 1
2

3

4

5

6
789

10

11

12

13

14
15

● To look up an element,
compute its hash code
and start looking there.

● Move around the ring
until either the element
is found or a blank spot
is detected.

● (If every single slot is
full, stop looking after
you’ve tried them all.)

fj

Linear Probing

w

y z

r x

0 1
2

3

4

5

6
789

10

11

12

13

14
15

● Deletions are a bit
trickier than in
chained hashing.

● We cannot just do a
search and remove
the element where we
find it.

● Why?

fj

Linear Probing

w

y z

r x

0 1
2

3

4

5

6
789

10

11

12

13

14
15

● Deletions are often
implemented using
tombstones.

● When removing an
element, mark that the
slot is empty and was
previously occupied.

● When doing a lookup,
don't stop at a
tombstone. Instead,
keep the search going.

fj

Linear Probing

墓

y z

r x

0 1
2

3

4

5

6
789

10

11

12

13

14
15

● Deletions are often
implemented using
tombstones.

● When removing an
element, mark that the
slot is empty and was
previously occupied.

● When doing a lookup,
don't stop at a
tombstone. Instead,
keep the search going.

fj

Linear Probing

y z

r x

0 1
2

3

4

5

6
789

10

11

12

13

14
15

● Having too many
tombstones in a
table can slow
down lookups,
since we have to
scan past them.

● Tombstones should
be overwritten
when new elements
are inserted. q

fj

Linear Probing

y z

r 墓

0 1
2

3

4

5

6
789

10

11

12

13

14
15

● Be careful, though,
to make sure you
don’t allow for
duplicates in your
table.

q

fj

 ★ Linear Probing at a Glance ★
● To check if an element exists in the table:

● Compute the hash code of the element.
● Jump to that location in the table.
● Scan forward – wrapping around if necessary – until the item or an

empty slot is found.
● To insert an element into the table:

● If the item already exists, do nothing.
● Otherwise, jump to the slot given by the hash code of the element.

Walk forward – wrapping around if necessary – until a blank spot or
tombstone slot is found. Then, put the item there.

● To remove an element from the table:
● Jump to the slot given by the hash code of the element.
● Walk forward – wrapping around if necessary – until the item or an

empty slot is found. If the item is found, replace it with a
tombstone.

How Fast is Linear Probing?
● Recall: The load factor of a hash table,

denoted α, is the ratio of the number of
items in the table to the number of slots.

● Fact: For any fixed value α < 1, the
expected cost of a lookup in a linear
probing table is O(1), assuming you have a
good hash function (and you rehash when
the table gets too full).

● This is the same big-O cost as a chained
hash table, though with a totally different
strategy!

0 1
2

3

4

5

6
789

10

11

12

13

14
15

Try It Yourself!
● Insert the following

values into this table.
● A (hash code 5)
● B (hash code 5)
● C (hash code 5)
● D (hash code 8)
● E (hash code 7)
● F (hash code 6)
● G (hash code 5)

G A

F B
E C

0 1
2

3

4

5

6
789

10

11

12

13

14
15

D

Try It Yourself!
● Insert the following

values into this table.
● A (hash code 5)
● B (hash code 5)
● C (hash code 5)
● D (hash code 8)
● E (hash code 7)
● F (hash code 6)
● G (hash code 5)

Time-Out for Announcements!

Assignment 6
● Assignment 5 was due today at 1:00PM.

● Want to use your late days? You can extend the deadline by 24
or 48 hours.

● Assignment 6 (The Great Stanford Hash-Off) goes out
today. It’s due next Friday.
● Implement the hashing strategies from today!
● See how fast these approaches are and how they compare

against chained hashing!
● As always, come talk to us if you have any questions!

That’s what we’re here for.
● YEAH Hours will be recorded and posted today. Due to

low attendance we won’t be holding them in-person this
time. If you’d like us to bring those back, let us know!

Back to CS106B…

A Question of Fairness
● Suppose we look up each of these

elements. How many slots would we
need to look at to find each of them?

● There’s a large variance in how long it’s
going to take to find things.

● How can we fix this?

4 5 6 7 8 9 10 11 12 13

…… A (5)

1 2 3 1 3 5 7
D (8) E (7) F (6) G (5)C (5)B (5)

● Robin Hood hashing is a slight
modification to linear probing.

● When we insert an element, if
the element we’re inserting is
further from home than the
current element, we displace
that element to make room for
the new one.

4 5 6 7 8 9 10 11 12 13

…… A (5) B (5) C (5) F (6)G (5)

0 1 2 33
E (7)

3
D (8)

3
H (12)

0
I (13)

0

● Neat trick: We can make
unsuccessful lookups in a
Robin Hood hashing table
faster than in a linear probing
table.

● Idea: Compare the distances
of the item to insert and the
item being looked up.

4 5 6 7 8 9 10 11 12 13

…… A (5) B (5) C (5) F (6)G (5)

0 1 2 33
E (7)

3
D (8)

3
J (6)

H (12)

0
I (13)

0

4

If J were in this
table, it would
have displaced
the E. So J can’t
be in the table!

● Neat trick: Robin Hood
hashing doesn’t need
tombstones.

● We can use a technique
called backward-shift
deletion instead.

4 5 6 7 8 9 10 11 12 13

…… A (5) B (5) C (5)

0 1 2
E (7)

1
D (8)

1
I (13)

0

 ★ Robin Hood Hashing at a Glance ★
● To check if an element exists in the table:

● Jump to the spot in the table given by the element’s hash code.
● Scan forward – wrapping around if necessary – keeping track of how many steps

you’ve taken. Stop when you find the item, you find a blank slot, or you find a
filled slot closer to home than the number of steps you’ve taken.

● To insert an element into the table:
● If the element is already in the table, do nothing.
● Jump to the table slot given by the element’s hash code. Scan forward – wrapping

around if necessary – keeping track of the number of steps taken. If you find an
empty slot, place the element there. Otherwise, if the current slot is full and
closer to home than the element you’re inserting, place the item to insert there,
displacing the element that was at that spot, and continue the insertion as if you
were inserting the displaced element.

● To remove an element from the table:
● Jump to the slot given by the hash code of the element.
● Walk forward – wrapping around if necessary – until the item or an empty slot is

found. If the item is found, remove it. Then, keep moving forward – wrapping
around as necessary – moving elements backward in the table one slot until an
empty slot or an item in its home position is found.

Try It Yourself!
● Draw what happens if

we insert the following
values into this Robin
Hood hash table.
● A (hash code 3)
● B (hash code 4)
● C (hash code 4)
● D (hash code 3)

1

0

23

4

Try It Yourself!
● Draw what happens if

we insert the following
values into this Robin
Hood hash table.
● A (hash code 3)
● B (hash code 4)
● C (hash code 4)
● D (hash code 3)

C
1

B
2

A
0

D
1 1

0

23

4

● What happens if we
delete A?

Try It Yourself!
● Draw what happens if

we insert the following
values into this Robin
Hood hash table.
● A (hash code 3)
● B (hash code 4)
● C (hash code 4)
● D (hash code 3)

B
1

D
0

C
0 1

0

23

4

● What happens if we
delete A?

● What happens if we
now delete D?

Try It Yourself!
● Draw what happens if

we insert the following
values into this Robin
Hood hash table.
● A (hash code 3)
● B (hash code 4)
● C (hash code 4)
● D (hash code 3)

B
1

C
0 1

0

23

4

● What happens if we
delete A?

● What happens if we
now delete D?

Robin Hood Hashing
● Like linear probing, with a good hash function, the

expected cost of a lookup in a Robin Hood hash table is
O(1).
● (Assuming you have a fixed load factor α and rehash the table

when you get too full.)
● Robin Hood hashing requires a bit of extra work

compared to linear probing for the distance
bookkeeping.

● However, the speedups from cutting off searches early
and for not having tombstones are significant at high
load factors.

● Optional: Code up Robin Hood hashing and compare it
against linear probing.

Your Action Items
● Start Assignment 6

● You know the drill! Slow and steady progress
is the name of the game here.

● Aim to complete Enumerations Warmup and
Linear Probing Warmup tonight, then start
working on Implementing Linear Probing
tomorrow.

Next Time
● Linked Lists

● A different way to store a sequence.
● Recursive Data Types

● Data types defined in terms of themselves.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

